

New Results from BNL E949 $K^+ \rightarrow \pi^+ \gamma \gamma$ and $\pi^0 \rightarrow \nu \ \bar{\nu}$

Peter S. Cooper Fermi National Accelerator Laboratory (for the BNL E949 collaboration)

E949 Collaboration

Available online at www.sciencedirect.com

PHYSICS LETTERS B

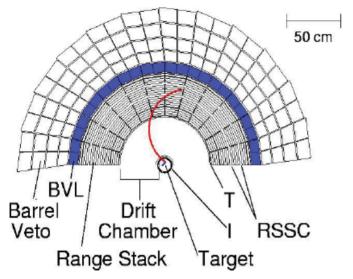
Physics Letters B 623 (2005) 192-199

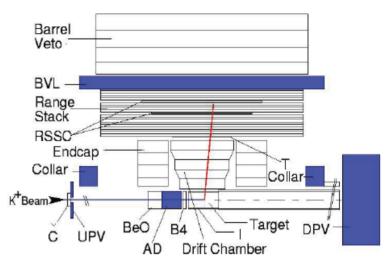
www.elsevier.com/locate/physletb

Search for the decay $K^+ \to \pi^+ \gamma \gamma$ in the π^+ momentum region P > 213 MeV/c

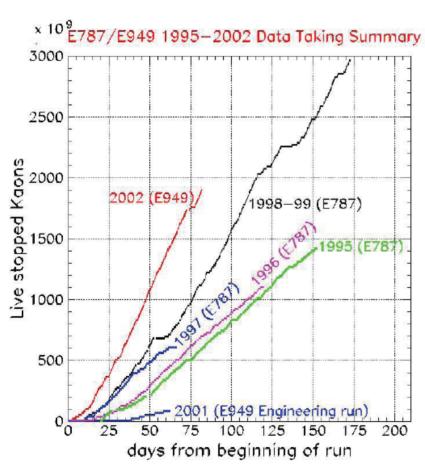
E949 Collaboration

A.V. Artamonov ^a, B. Bassalleck ^b, B. Bhuyan ^{c,1}, E.W. Blackmore ^d, D.A. Bryman ^e, S. Chen ^{d,2}, I.-H. Chiang ^c, I.-A. Christidi ^f, P.S. Cooper ^g, M.V. Diwan ^c, J.S. Frank ^c, T. Fujiwara ^h, J. Hu ^d, D.E. Jaffe ^c, S. Kabe ⁱ, S.H. Kettell ^c, M.M. Khabibullin ^j, A.N. Khotjantsev ^j, P. Kitching ^{k,3}, M. Kobayashi ⁱ, T.K. Komatsubara ^{i,*}, A. Konaka ^d, A.P. Kozhevnikov ^a, Yu.G. Kudenko ^j, A. Kushnirenko ^{g,4}, L.G. Landsberg ^a, B. Lewis ^b, K.K. Li ^c, L.S. Littenberg ^c, J.A. Macdonald ^{d,*}, J. Mildenberger ^d, O.V. Mineev ^j, M. Miyajima ¹, K. Mizouchi ^h, V.A. Mukhin ^a, N. Muramatsu ^m, T. Nakano ^m, M. Nomachi ⁿ, T. Nomura ^h, T. Numao ^d, V.F. Obraztsov ^a, K. Omata ⁱ, D.I. Patalakha ^a, S.V. Petrenko ^a, R. Poutissou ^d, E.J. Ramberg ^g, G. Redlinger ^c, T. Sato ⁱ, T. Sekiguchi ⁱ, T. Shinkawa ^o, R.C. Strand ^c, S. Sugimoto ⁱ, Y. Tamagawa ¹, R. Tschirhart ^g, T. Tsunemi ^{i,5}, D.V. Vavilov ^a, B. Viren ^c, N.V. Yershov ^j, Y. Yoshimura ⁱ, T. Yoshioka ^{i,6}


a Institute for High Energy Physics, Protvino 142 280, Moscow Region, Russia
b Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
c Brookhaven National Laboratory, Upton, NY 11973, USA
d TRIUMF, 4004 Wesbrook Mail, Vancouver, British Columbia, Canada V6T 2A3
e Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 121
f Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
8 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
h Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
i High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801, Japan
j Institute for Nuclear Research, University of Alberta, Edmonton, Canada T6G 2N5
h Department of Applied Physics, Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, Japan
m Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 560-0043, Japan
h Laboratory of Nuclear Studies, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
O Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan



E787/E949 was designed primarily to observe the rare kaon decay $K^+ \rightarrow \pi^+ \nu \overline{\nu}$, but other rare modes are accessible, particularly those involving photons



- Incoming beam (~700 MeV/c) tagged by Cerenkov, dE/dx counters
- Stopped kaon beam. Wait ~2ns for K decay (reject beam π). High geometrical acceptance.
- K decay-products momentum analyzed in 10 kG B field.
- Stopped decay pion. Measurement of particle range and energy. Observation of $\pi \to \mu \to e$ decay sequence for μ rejection.
- Photon detectors surround everything (E949 PV upgrades shown in blue).

E787 / E949 Data Taking Summary

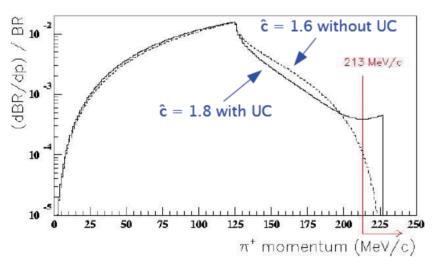
This plot is for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ triggers but gives a rough idea of the kaon exposure.

Recall, E949 ran for 12 weeks in 2002 (out of 60 weeks approved) and has not run since then.

2002 run:

- AGS main power supply problem.
 20% worse duty cycle cf. E787
 Lower p momentum ⇒ ~10% loss in K flux
- K/π separator problems

$K^+ \rightarrow \pi^+ \gamma \gamma$ Introduction


At O(p⁴) in ChPT, BR(K⁺ \rightarrow π ⁺ γ γ) and spectrum shape depend on a single parameter, \hat{c}

So-called "unitarity corrections" (UC) dominate at the next order (O(p6))

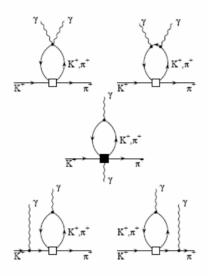
• E787 analysis had a slight preference for UC, but not conclusive

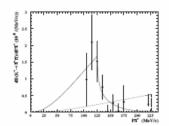
Effect of UC is most dramatic at the π^+ kinematic endpoint (low M($\gamma\gamma$))

• E949 focused on this region

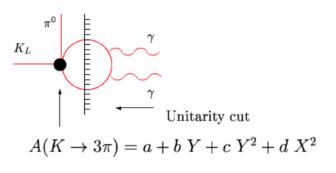
New in E949

- Better trigger, no online prescale!
- Thicker, brighter barrel photon detector


<u>K exposure</u>	# of triggers	
 3.1 x 10 ¹⁰ 1.19 x 10 ¹²	7.3 × 10 ⁵ 1.1 × 10 ⁷	

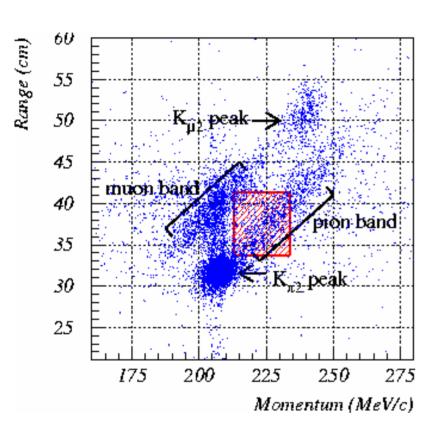

$K^+ \rightarrow \pi^+ \gamma \gamma$ in Chiral Perturbation Theory

leading contribution at $O(p^4)$



undetermined coupling-constant \hat{c}

NLO contribution at $O(p^6)$


• "unitarity" corrections with \hat{c}

- ullet Vector-Meson exchange negligible in ${
 m K}^+ o \pi^+ \gamma \gamma$ important in ${
 m K}_L^0 o \pi^0 \gamma \gamma$ (a_v)
- other new dynamics ??

$K^+ \rightarrow \pi^+ \gamma \gamma$ Offline Analysis

Backgrounds:

$$K^+ \rightarrow \pi^+ \pi^0 (K\pi 2)$$

- π⁺ kinematics measured
- Photon energies/angles mis-measured
- Or photon overlaps charged track

$K\pi 2$ with K Decay In Flight (DIF)

- π⁺ Kinematics measured
- Fakes K decay at rest

$K^+ \rightarrow \mu^+ \nu \gamma$, $\pi^0 \mu^+ \nu \gamma$ or $K\pi 2$ with π DIF

- μ⁺ kinematics measured
- $\pi \to \mu \to e$ decay sequence fooled

Two beam particles

 Suppressed with good segmentation and timing in the K tracking system

Backgrounds, Acceptance, Sensitivity

Backgrounds

 $K\pi 2$

Overlapping Photon

Muon

K decay in flight

Two Beam

Total

Number of Events

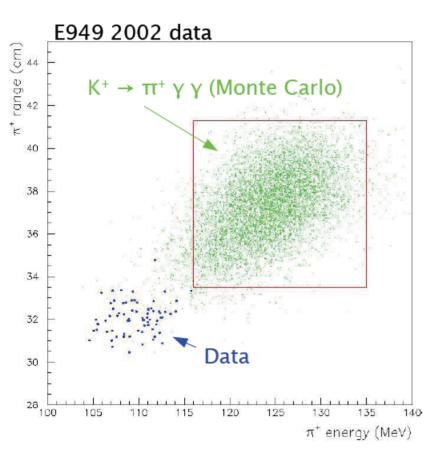
 0.017 ± 0.006

 0.065 ± 0.065

 0.090 ± 0.020

 0.025 ± 0.014

<0.006 (90%CL)


 0.197 ± 0.070

	including unitarity corrections	without the corrections	
	$\hat{c}=1.8$	$\hat{c}=1.6$	
Total acceptance	$(2.99 \pm 0.07) imes 10^{-4}$	$(1.10 \pm 0.04) \times 10^{-4}$	
$(P_{\pi^+}~>~213~{ m MeV}/c)$			
N_K	1.19×10^{12}		
K^\pm stopping efficiency	0.754 ± 0.024		
$(\mathrm{K}_{\pi 2}$ decays in the trigger $)$			
Single Event Sensitivity	$(3.72 \pm 0.14) \times 10^{-9}$	$(10.1 \pm 0.5) \times 10^{-9}$	
predicted branching ratio	6.10×10^{-9}	0.49×10^{-9}	
$(P_{\pi^+}~>~213~{ m MeV}/c)$			
expectation	1.6 events	0.05 events	

$K^+ \rightarrow \pi^+ \gamma \gamma$, $K^+ \rightarrow \pi^+ \gamma$ results

Blind analyses. No events seen in signal boxes

Br(K⁺
$$\rightarrow \pi^+ \gamma \gamma$$
) < 8.3 x 10⁻⁹ (90%CL)
 $p(\pi) > 213$ MeV/c
 Assuming spectrum from ChPT with unitarity corrections (c = 1.8)

Factor of 8 sensitivity improvement over E787; but, cannot confirm or rule of unitarity corrections. With a full 60 week run we would have been x10 more sensitive.

Same data set is used to search for $K^+ \rightarrow \pi^+ \gamma$ which *only* violates angular momentum conservation and gauge invariance $Br(K^+ \rightarrow \pi^+ \gamma) < 2.3 \times 10^{-9} (90\%CL)$

Factor of 160 improvement over E787

$$\pi^0 \rightarrow \nu \ \bar{\nu}$$

 Forbidden by angular momentum conservation if W's and neutrinos are purely left handed. Can proceed if neutrinos have mass.

$$Br(\pi^0 \to \nu \ \overline{\nu}) < 1.1 \times 10^{-9} \text{ for } m(\nu_\tau) < 18.2 \text{ MeV/c}^2$$

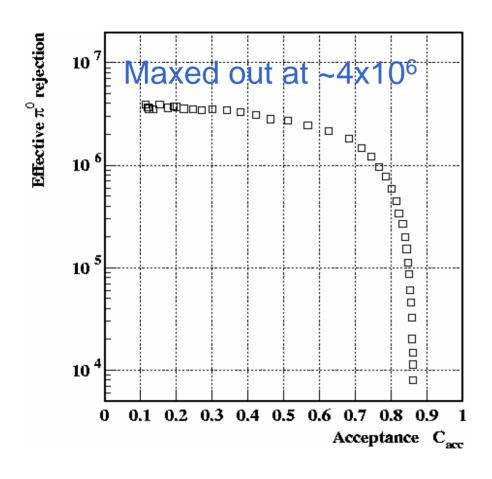
Best previous limit comes from E787

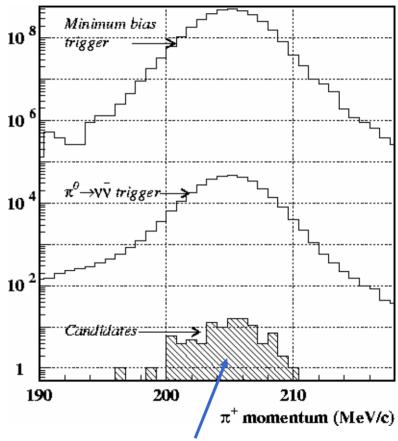
$$Br(\pi^0 \to \nu \ \overline{\nu}) < 8.3 \times 10^{-7} (90\%CL)$$

Method:

Copious supply of clean π^0 from $K^+ \rightarrow \pi^+ \pi^0$ tagged by monochromatic π^+ .

Look for $K\pi 2$ events with no activity other than K^+ and π^+ .


Trigger sample is same as $K^+ \rightarrow \pi^+ \nu \bar{\nu}$. Select $K\pi 2$ events; apply tightest photon veto.


Tune photon veto on 1/3 of data, use other 2/3 for search.

$\pi^0 \rightarrow \nu \ \bar{\nu} \ \pi^0$ Rejection

99 events survive all cuts

$\pi^0 \rightarrow \nu \ \bar{\nu}$ Results

- 99 events remain after all photon veto cuts
- We presume these to be $\pi^0 \rightarrow \gamma \gamma$ with undetected photons
 - The e949 photon veto inefficiency in not known and probably not knowable at this level.
 - A background subtraction is not a reasonable option.
- The corresponding branching ratio upper limit is:

$$Br(\pi^0 \to \nu \ \bar{\nu}) < 2.7 \times 10^{-7} (90\%CL)$$

Factor of 3 improvement beyond E787

Conclusions

Present E949 results

Br(K⁺
$$\to \pi^+ \nu \ \bar{\nu}) = (1.5 \ ^{+1.3}_{-0.9}) \ x \ 10^{-10} \ [3 \ events, E787(2) + E949(1)]$$

Br(K⁺ $\to \pi^+ \gamma \gamma$) < 8.3 x 10⁻⁹ (90%CL) p(π) > 213 MeV/c
Br(K⁺ $\to \pi^+ \gamma$) < 2.3 x 10⁻⁹ (90%CL)
Br($\pi^0 \to \nu \ \bar{\nu}$) < 2.7 x 10⁻⁷ (90%CL)

- Expected new E949 Results
 - $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ from region below Kp2 peak
- Further Progress in ultra-rare Kaon decays

Not in the US, P326(Cern), Jparc(Japan)

References

$$K^+ \rightarrow \pi^+ \gamma \gamma$$
, $K^+ \rightarrow \pi^+ \gamma$

T. Yoshioka, Univ. of Tokyo thesis, KEK K-decay Report 2005-2, Hep-ex/0505069, Phys.Lett.B 623 (2005) 192-199 $\pi^0 \rightarrow \nu \ \bar{\nu}$

K.Mizouchi, Kyoto Uinv. Thesis (in preparation), hep-ex/0506028, submitted to Phys.Rev.D. Rapid Communications

